For design engineers in the process of selecting components for an application, the motor or gearmotor can be one of the more difficult components to source. There are so many types of motors and gearmotors all screaming for your attention and promising to be the “most efficient”, the “highest quality” or boasting about “high precision”. Groschopp uses 4 simple steps to lead designers to the best motor/gearmotor choice for a particular application. There are several key design parameters that should be considered when selecting a motor or gearmotor for a motion control application.
Table 1: Gear stepper motor Selection Process – steps to complete to ensure a gearmotor properly matches the application
As the motor or stepper motor planetary gearbox selection process begins, the designer must gather the relevant technical and commercial requirements. This first step is often overlooked, but it is a critical component in the design process. The gathered design inputs information will then be used in the selection process and will dictate the ideal motor for the application. Failure to gather the proper inputs can lead the designer down an untended path. For this reason, it is helpful to use the Application Checklist (Table 2) when developing the motor specification. These parameters, along with some project specific requirements, will be helpful when navigating the selection process.
Table 2: Application Checklist – use this checklist to help formulate the specific requirements to ensure the gearmotor vendor has the critical information necessary to achieve the best match between the gearmotor and the application
Next, the designer must consider what type of motor technology best suits the intended application. Using the design inputs, the Motors Quick Reference Guide (Table 3) can be used as a selection matrix in the first step of the decision process. This reference guide details four common motor types and provides general information to consider when selecting each stepper motor spur gear. Because each application has its own unique characteristics, it is important to determine which of the parameters (e.g. horsepower, efficiency, life, starting torque or noise ratings) are most important to the application under consideration. During the motor selection process, by looking at the required speed and torque of the application, it should become evident to the designer if the motor chosen requires a gearbox to meet the necessary requirements. If a gearmotor is necessary for the application, another level of complexity will be added and several additional criteria need to be evaluated.